Adaptive Galerkin approximation algorithms for Kolmogorov equations in infinite dimensions

نویسندگان

  • Christoph Schwab
  • Endre Süli
چکیده

Space-time variational formulations and adaptive Wiener–Hermite polynomial chaos Galerkin discretizations of Kolmogorov equations in infinite dimensions, such as Fokker–Planck andOrnstein–Uhlenbeck equations for functions defined on an infinite-dimensional separable Hilbert space H , are developed. The wellposedness of these equations in the Hilbert space L2(H, μ) of functions on the infinite-dimensional domain H , which are square-integrablewith respect to aGaussian measure μ with trace class covariance operator Q on H , is proved. Specifically, for the infinite-dimensional Fokker–Planck equation, adaptive space-time Galerkin discretizations, based on a wavelet polynomial chaos Riesz basis obtained by tensorization of biorthogonal piecewise polynomial wavelet bases in time with a spatial Wiener–Hermite polynomial chaos arising from the Wiener–Itô decomposition of L2(H, μ), are introduced. The resulting space-time adaptiveWiener–Hermite polynomial Galerkin discretization algorithms of the infinite-dimensional PDE are proved to converge quasioptimally in the sense that they produce sequences of finite-dimensional approximations that attain the best possible convergence rates afforded by best N -term approximations of the solution from tensor-products of multiresolution (wavelet) time-discretizations and theWiener–Hermite polynomial chaos inL2(H, μ). As a consequence, the proposed adaptive Galerkin solution algorithms exhibit dimension-independent performance, which is optimal with respect to the algebraic best N -term rate afforded by the solution and the polynomial degree and regularity C. Schwab (B) Seminar for Applied Mathematics (SAM), ETH Zurich, HG G57.1, CH 8092 Zurich, Switzerland e-mail: [email protected] E. Süli Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Galerkin Approximation Algorithms for Partial Differential Equations in Infinite Dimensions

Space-time variational formulations of infinite-dimensional Fokker–Planck (FP) and Ornstein–Uhlenbeck (OU) equations for functions on a separable Hilbert space H are developed. The well-posedness of these equations in the Hilbert space L2(H,μ) of functions on H, which are square-integrable with respect to a Gaussian measure μ on H, is proved. Specifically, for the infinite-dimensional FP equati...

متن کامل

AN ADAPTIVE WAVELET SOLUTION TO GENERALIZED STOKES PROBLEM

In this paper we will present an adaptive wavelet scheme to solvethe generalized Stokes problem. Using divergence free wavelets, theproblem is transformed into an equivalent matrix vector system, thatleads to a positive definite system of reduced size for thevelocity. This system is solved iteratively, where the applicationof the infinite stiffness matrix, that is sufficiently compressible,is r...

متن کامل

OnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions

This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...

متن کامل

Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an a priori error analysis for N-term generalized polynomial chaos approximations in a scale of Bochner spaces. The problem is reduced to a parametric family of deterministic initial boundary value problems o...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012